Biophysical characterisation of the recombinant human frataxin precursor
نویسندگان
چکیده
Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.
منابع مشابه
Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase.
Frataxin is a nuclear-encoded mitochondrial protein which is deficient in Friedreich's ataxia, a hereditary neurodegenerative disease. Yeast mutants lacking the yeast frataxin homologue (Yfh1p) show iron accumulation in mitochondria and increased sensitivity to oxidative stress, suggesting that frataxin plays a critical role in mitochondrial iron homeostasis and free radical toxicity. Both Yfh1...
متن کاملThe conserved Trp155 in human frataxin as a hotspot for oxidative stress related chemical modifications.
Frataxin is a mitochondrial protein that is defective in Friedreich's ataxia resulting in iron accumulation and an environment prone to Fenton reactions. We report that frataxin is susceptible to carbonylation and nitration modifications in residues from the beta-sheet surface (Tyr143, Tyr174, Tyr205 and Trp155). Frataxin functions are not significantly affected: frataxin-mediated protection ag...
متن کاملRecombinant human erythropoietin: effects on frataxin expression in vitro.
BACKGROUND Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by decreased expression of the protein frataxin, recently described to be an iron chaperone for the assembly of iron-sulphur clusters in the mitochondria, causing iron accumulation in mitochondria, oxidative stress and cell damage. Searching for compounds that could possibly influence frataxin expression, we found that...
متن کاملAssembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia.
Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by a deficiency of frataxin, a conserved mitochondrial protein of unknown function. Mitochondrial iron accumulation, loss of iron-sulfur cluster-containing enzymes and increased oxidative damage occur in yeast and mouse frataxin-depleted mutants as well as tissues and cell lines from FRDA patients, suggesting that fr...
متن کاملThe expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast.
Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loadin...
متن کامل